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Discontinuity from stability for multiphase multicomponent flows of compressible liquids and gases 

through a porous medium is analysed for multidimensional perturbations. A system of dispersion 

equations is derived for the stability of an arbitrary non-isothermal displacement front with any 

number of phases and components. Stability criteria are derived for perturbations which leave the 

discontinuity, and which have not been previously considered. The stability problem for a jump in 

concentration and water saturation when oil is being displaced by an active admixture solution is 

considered as an example. 

Displacement stability for immiscible fluids of differing viscosities has been previously 
investigated for Hele-Shaw cells [l, 21 and porous media [3,4], together with frontal stability in 
the Buckley-Leverett problem [5,6]. More complicated problems of flow in porous media with 
interphase mass-exchange have also been considered [7]. However, only contact perturbations 
moving with the velocity of the discontinuity were taken into account there. A review of other 
approaches and investigations in frontal displacement stability is given in [S]. 

1. THE INITIAL SYSTEM OF EQUATIONS 

The general system of equations describing multiphase multicomponent transfer in a porous 
medium in the large-scale approximations can be written in the form 

ap,0t+ div ji = 0 (i = 1, 2..., k) (1.1) 

8pk+ll& + divjk+, = 0 (1.2) 

ji = -Ki(Pl,...* pk+l, p) VP (i = 1, 2..., 4 (1.3) 

Here pi (i = 1, 2, . . . , k) are the generalized number of phases (components), ii are their 
fluxes, Ki is the generalized conductivity of the porous medium for the ith flux, and p is the 
pressure (ignoring the capillary pressure jump between phases). For example, in the Buckley- 
Leverett model [.5] p1 = s is the saturation of the aqueous phase, p2 = 1 -s, K, = Kf;(s)/pi (i = 1, 
2), where K is the permeability of the porous medium, and fi, pi are the relative phase 
permeabilities and dynamic viscosities of the phases. In the general case the quantities Ki may 
depend on the pressure. One of the p, may be taken to be the temperature. Here only 
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convective heat transfer is included, and the effective thermal conductivity is ignored (the 
large-scale approximation [5]). 

The given system is closed if there an additional relation exists between the functions pi, pa+l 
and p which can be interpreted as an equation of state 

ok+1 = 9 (PI, ***v pkv P) (1.4) 

System (l.l)-(1.4) can have discontinuous solutions. At a discontin~ty the pressure contin- 
uity equation 

[PI=0 

and the Hugoniot condition (the law of conservation for pi) [9] 

(1.5) 

must be satisfied. 

[&I v, = I&l (i = 1, 2..., k + 1) (1.6) 

Here V,, is the normal component of the displacement front velocity and ji, (i = 1, 2, . . . , 
k + 1) are the normal flux components. 

We transform the original system so as to separate the “hyperbolic” part of the pi transfer 
equations from the “elliptic” or “parabolic” pressure field. The “elliptic” (“parabolic”) case 
corresponds to an incompressibility (compressibility) condition on the effective flux j 
(introdu~d below). We substitute Eq. (1.4) into (1.2). After reduction, we find 

aPi + -+divj,, ~0 (i=l, 2...,k); qi =*, (pp=* Qix+qP at aPi b 

Here and below repeated indices are summed. 
Substituting expressions for the derivatives api /at obtained from (1.1) into the last 

equation, we reduce it to the form 

divj + j,Vq, + cp,ap/at = 0, j = jk+, - <pJ, (n = 1,2..., k) (1.7) 

The flux j is expressed from Eqs (1.3) 

J ’ = -KVp, K = &+I - (P,& 

Below we assume that by a suitable choice of fluxes ji one can ensure that K never vanishes. 
The stronger assumption K 30 corresponds to the physical idea that the porous medium 
resists the multicomponent flux. In this case the fluxes ji can be expressed in terms of j by 

After substituting Eqs (1.7) and (1.8) into (1.1) we obtain a transformed system 

$+Au(lVPj)-fr’Pp at * -@(jVp)=O (i=l, 2..., k) 

!k divj+j(~jVpj)+~~ at +B(jVp)=O. j=-KVp 

ap. 
bj=fn apj * 

l&f,&, Au=a-fibj; (i, j=l. 2 . . . . k) 
aP 3Pj 

(1.9) 
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The nature of the transfer of the pi is governed by the matrix A = [A,]. “Hyperbolic” 
transfer means that the matrix A has k real and distinct eigenvalues 3L1 c h, c . . . c h,. It is 
assumed that this is satisfied, at least in some neighbourhood of the discontinuity under 
investigation. 

We note that when passing through the discontinuity the ordering of the eigenvalues may 
change. Hence the same eigenvalue (as a function of hydrodynamic variables) could have 
different values before and after the discontinuity. 

The more general case of non-strict hyperbolicity, when the eigenvalues may be identical can 
be similarly treated. 

2. EQUATIONS IN THE NEIGHBOURHOOD OF THE DISPLACEMENT FRONT 

Let 0 be any point on the front. We consider its motion at some instant of time (which 
without loss of generality can be zero). We direct the OX axis along the normal to the front. We 
assume that its velocity at that instant is V and that the pressure at the point 0 is pr. 

We make the change of variables 

x-Vr=ET’, y=&y’, z=&, P-Pf =Ep’ (2.1) 

We choose the parameter E to be sufficiently small, which amounts to focusing on a neigh- 
bourhood of the point 0. Ignoring terms of order E and dropping the primes from the 
formulae, we reduce system (1.9) to the form 

aPi 
x +AijjVPj - ” ax s=o (i=l, 2..., k), divj+bi(jVpi)=O, j=-flp (2.2) 

In the lowest approximation in E the coefficients A,, bj, and K do not depend on p and are 
determined by the pressure pr. 

We will describe the zeroth approximation in the neighbourhood of the front. We shall 
consider a frontal discontinuity: j,=(i, 0,O). Here, in the neighbourhood of the point 0 (with 
sufficiently small E), the densities and fluxes in Eqs (2.2) can be assumed to be constant: 
p,=pp=p:, j,=jz=j: (the m’ mus and plus indices, respectively, denoting quantities before 
and after the discontinuity). The pressure field is then described by linear relations 

(2.3) 

The Hugoniot relations at the discontinuity are 

[pp]V = [JOj,O] (i = 1, 2..., k), ~p~+ll~=~~,Ol+~cpPf;.o~~l~ b”l=O (2.4) 

As well as relations (2.4) the discontinuity should satisfy additional stability conditions with 
respect to one-dimensional perturbations-the Lax conditions [9]. For one-dimensional stabil- 
ity it is necessary that k +l hyperbolic characteristics of the system should arrive at the 
discontinuity. The corresponding system of inequalities can be written in the form 

for some I, lclck. 
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3. THE SYSTEM OF EQUATIONS FOR THE PERTURBATIONS 

We consider a small perturbation of the original displacement front. It corresponds to small 
deviations of the pressure, densities and fluxes j, p,‘, p’. with respect to these quantities the 
system of equations has the form 

JP’ apl ~+(j~A”-VI)~=O 

Q' = _KO ap’ ;i;--Dopl, ji=-K o ad -, j: z-K’% 
ay 

(3.1) 

(3.2) 

(3.3) 

The deviation of the discontinuity from the unperturbed (null) state is denoted by X’(t, y, z). 
Using the coefficients introduced in (1.9), the conditions at the discontinuity can be written in 
the form 

(3.4) 

[p;+, lax’ / at = [aoT (A - Wp’ I+ W” . f” IQ’ I + [Q’ I 

[p’] = -[KO]X’ 

(3.5) 

(3.6) 

In Eqs (3.1)-(3.6) the superscripts 0, 1, respectively, refer to the zeroth and first approxi- 
mations, I = [6,j] is the unit matrix, p”, p’, f”, a’, Do are vectors composed of the coefficients 
pp, p;, fl”, cpg, D; (j= 1, 2. * 9 , k), with the last coefficients defined by 

D; = K;K’ I apj - b; (3.7) 

Equations (3.1) and (3.4) are vectorial (systems of k equations), and the first term on the 
right-hand side of (3.5) is the convolution of two vectors with the matrix A -VI. Condition 
(3.6) is a consequence of the pressure continuity’equation (1.5) and the “drift” of the dis- 
continuity conditions onto the x = 0 plane [l]. 

In system (3.1)-(3.3) the coefficients depend on the quantities pf, j,’ which are discontinu- 
ous at x = 0. Hence (3.1)-(3.3) can be considered to be two systems of linear equations with 
constant coefficients, coupled to one another through the boundary conditions (3.4)-(3.6) at 
n = 0. In addition, it is required that the perturbations tend to zero as x +--M in the domain in 
front of the discontinuity and as x + + 00 in the domain behind the discontinuity. The initial 
conditions for system (3.1)-(3.3) remain undefined. 

The displacement front is considered to be unstable a solution of the problem exists which 
increases without limit as t + 00. 

4. DERIVATION OF THE DISPERSION RELATIONS 

The linear hyperbolic system of equations (3.1) is independent of Eqs (3.2) and (3.3). Its 
general solution is the sum of a steady solution corresponding to a “contact” perturbation 
which moves with the velocity of the discontinuity, and an unsteady solution for perturbations 
whose velocity differs from the discontinuity velocity. The first type of perturbation is 
considered in the following section. The part of the general solution corresponding to an 
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unsteady perturbation has the form 

+ ‘-jo~ox_v. Yv Z 
x a 

(4.1) 

Here d, are the right-hand eigenvalues of the matrix A’, h”, are its eigenvalues, and Y’” are 
arbitrary functions ( a = 1,2 . . . , k). Without loss of generality we choose these functions in the 
form 

Ya = c”(y, z)exp { ( j~~~_y]}~ O=‘OnSt 

0 r- (4.2) 

which corresponds to expanding an arbitrary solution p’ as an integral je““p*(o, x, y, z)do 
which appears as the result of applying the method of separation of (space and time) variables 
to system (3.1). The unknown functions in Eqs (3.2)-(3.6) can be represented similarly 

Q’ =Q*<x, y, z)ew, p’ = p*(x, y, z)ew, X’ = X’(y, z)ew (4.3) 

We shall assume that system (3.1)-(3.6) has a solution corresponding to an instability of the 
discontinuity. Then 

Reo>O (4.4) 

On the other hand, the quantity p1 should tend to zero as x + +=. By virtue of the Lax 
conditions (2.5) this leads to removal from the sum in (4.1) of terms corresponding to 
perturbations incident on the discontinuity. 

Using in (4.1) only those terms that vanish as x +_++= (corresponding to characteristics 
leaving the discontinuity), we reduce it to the form 

p*- =z, Cabda-exp(- jiF_v) (j&-v<@ 

(4.5) 

p*+ = ,$+, Ca+da+ exp (j,‘h’, - V > 0) 

Here the number 1 is the same as in the Lax conditions (2.5). 
To solve Eqs (3.2) and (3.3) we Fourier transform them with respect to y, z and substitute 

the last two relations of (3.3) into (3.2). Keeping the same notation for the transforms as for the 
original quantities, and using (4.3), we obtain 

aQ* I ax + K”y2p* = 0, y* = <* + q*, Q' = -K’ap’ I ax - D”p* 

Here c and IJ are the Fourier transform coordinates replacing z and y, respectively. 
Solving the resulting system of first-order linear differential equations for the variables Q *, 

p* and rejecting terms that do not tend to zero when x + +m, we find 

Q* = Q' exp(ryx)+ CC, exp(op,x), p* = + Q* - exp(+) - C OP 
,f KOY 

*Ga exp(Max) 
*KY 

(4.6) G 
a 

The minus and plus indices in Q* and C,, respectively, denote quantities in front of and 
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behind the discontinuity. The signs in the equations are chosen to correspond to these indices. 
The summation C, is performed over M from I +l to k, and the summation C_ is performed 
over a from 1 to I-1. 

Substituting solutions (4.1)~(4.6) into the discontinuity conditions (3.4)-(3.6) and putting 
x = 0 in these equations, after algebraic transformations we obtain the system of equations 

(4.7) 

(4.9) 

When deriving Eqs (4.7) and (4.8) we used the fact that the vectors d” are eigenvectors of 
the matrices A*. The expressions (@Oidu+), (a’-d”-), (@+f&), (Q-f@), (@+d”+), (D&d”-) are 
the scalar products of the vectors they contain. 

System (4.7), (4.8) should be considered as k + 1 linear equations in the k + 1 unknowns j +, 
j-, u: ((x=1,2 ,..., k; a #l), Solving these equations and substituting the sotution into (4.9) 
we obtain an algebraic equation in o. the front is unstable if for some y this equation has a 
solution such that Rew > 0. 

The solution simplifies if the total flux is incompressible and the original equation (1.2) has 
the form div j = 0. 

In that case Eqs (4.7) and (4.9) remain unchanged, while (4.8) is replaced by the condition 

j+ =i- (4.11) 

5. STABILITY WITH RESPECT TO CONTACT PERTURBATIONS 

Let d”, d-be vectors satisfying the equations 

(A+ - M)d”+ = (A- - VI)d*- = 0 (5.1) 

If the velocity of the discontinuity V is an eigenvalue of the matrix A' (A-), then d”’ (d”-) 
is the corresponding eigenvector. In this case a contact characteristic exists coinciding with the 
discontin~ty. In the opposite case the vector d” (d”-) vanishes. 

As well as solutions of the form (4.1) the system of equations (3.1)-(3.3) has a solution that 
is steady in a frame of reference attached to the discontinuity 

P’v=dvfuy:(x, y, z>+Y;(~, z) (5.2) 

As above, without loss of generality we put 

(5.3) 

In order to satisfy the conditions as x -+ a0 one must put p- > 0, p+ CO, Y$ = 0. 
In this case the quantities p’ and Q1 have a form similar to (4.6) 
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9”’ = Q* w(W) + H* exp@*x), p”’ = T&Q* exp(iyx) - H* exp(g*x) 

Q' = Q% Y. z). H 
* Cf(DOfdUf) 

Bf? _y2 

Substituting these equations into the discontinuity conditions (3.4)-(3.6), using a replace- 
ment similar to (4.10), and (A -Vl)p' =0 which holds because of (5.1) and (5.2), we obtain the 
system 

[pp]s = f"+i+ -f"T 

[Is+, 1% 
‘+ 

=J 
_ j- + (cpO+ f 0+) j' _ (f O-CpO-) j- 

[K~lx~ i’ i_ - 
=KOfy+KO-y+X+-X * x*= 

( DofdUf )Cf 

K”*Y2@* f Y) 

(5.4) 

(5.5) 

(5.6) 

Note that the system of equations (5.4), (5.5) is identical with the system of conditions at the 
discontinuity in the zeroth approximation (2.4), with V replaced by 3X1 /at and j,” replaced by 
j’. Hence, assuming that the rank of the matrix 

[ I+(SLfO') I+(cEf-) 
0 0 1 

is equal to two, this system has the unique solution 

.f = 
J j$*v-IaX’ / at 

Substituting this solution into (5.6), we obtain the differential equation 

I 

ax+,&,, A= -v[K”ly 
at jf' I K”+ + ji- I K”- 

= VY(K- -K+) 
K-+K+ 

, c= WC-%‘I 
K-+K+ 

(5.7) 

The quantity h is constant while C depends of y and t. Equation (5.7) has the solution 

X1 - C = (Xl(O) - C) exp (-ht) (5.8) 

which is bounded when t + - if h > 0. 
We note that Eq. (5.7) remains true (with the constant C zero) if there are no contact 

characteristics. In that case the condition h>O is the criterion for the stability of the 
discontinuity with respect to pressure and flux perturbations without density perturbations. 
When there are no contact characteristics C is zero, and the discontinuity perturbations decay 
at infinity. In the opposite case they tend to a non-zero constant value. 

In the often encountered special case when j,“, jr and V have the same sign, the stability 
condition relative to contact perturbations has the usual form [K’] c 0 [5,7]: the motion is stable 
if the pressure gradient in the displaced fluid is less than in the displacing fluid. Using 
expressions (2.3) for K’ we can write this condition in the form 

jxo’ / .KO’ < jxo- / KO- 
(5.9) 

If the flow is incompressible and positive, this last equation acquires the form 
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KQ-<P (5.10) 

i.e. the displacement front is stable if the mobility of the displacing phase is lower than that of 
the displaced phase. 

As an example we consider flows described by two equations of the form (l.l), (1.2) (k = 1). 
These include, for example, two-phase flow of immiscible liquids (and in the special case of 
incompressible phases this is Buckley-Leverett flow) and two-phase two-component flow in a 
porous medium [5, 91. Because of the Lax conditions there are no characteristics leaving 
discontinuities of such flows. Hence the stability of the discontinuities is governed by the 
condition h > 0. For one-dimensional (plane-parallel or plane-radial) flows the assumptions 
that lead to condition (5.10) hold. Here the quantities K”+, Kw are to be interpreted as the 
total mobilities of the phases before and after the discontinuity. 

Thus, to verify the stability of a discontinuity with respect to contact perturbations it is 
necessary to check the condition h > 0. The condition for stability with respect to perturbations 
that leave the discontinuity is the positivity of the quantity o defined by system (4.7)-(4.9). 
Perturbations incident on the discontinuity do not influence its stability. 

6. STABILITY OF DISPLACEMENT BY A SOLUTION WITH AN ACTIVE ADMIXTURE 

We apply the formalism developed above to the stability of a discontinuity associated with 
the concentration jump in the self-similar problem of the displacement of oil by a solution with 
an active admixture. The system of equations describing this process has the form [5, lo] 

as . . acs 
mz+dw(FJ)=O, m at - + div(CFj) = 0 

div j = 0, j = -lIVp, l-l = fo(St C) + MS, C) 

l&J(C) CL,(C) 

(6.1) 

(6.2) 

Here S is the saturation of the water phase, C is the mass concentration of the admixture, 
F = F(S, C) is the Buckley-Leverett function, l-l is the total mobility of the phase, fo, fw are 
the phase permeability functions and u,, u, are the dynamic viscosities of oil and water, 
respectively. It is assumed that the admixture is transported only by the water flux and is not 
sorbed by the rock skeleton. The more general case of a sorbable admixture which is soluble in 
oil can be treated similarly. 

We consider one-dimensional solutions of system (6.1), (6.2). In this case the system can be 
simplified. It follows from the first equation of (6.2) that the flux j depends only on time. 
Introducing the new variable z = m-’ J j dt we reduce Eq. (6.1) to the form 

ds+dF=o ac+acc, 
az ax ‘t ax 

(6.3) 

Boundary conditions corresponding to the displacement of oil by the active admixture solu- 
tion have the form 

z=O:S=S+,C=O;x=O:F=l,S=S-,C=C- 

System (6.3) with the given boundary condition have a self-similar solution depending on 
the single variable 5 =x lz. This solution is constructed grapho-analytically using the (S, F) 
plane (see Fig. 1) [5,8]. 

The solution constructed, corresponding to the case of high initial water-saturation S’, 
contains two discontinuities. One consists of a simple S-wave (section l-2), a concentration 



Stability of the discontinuity front in multiphase multicomponent displacement 699 

F 

I 

‘I 

Fig. 1. 

jump III (section 2-3), a degenerate wave (section 3-3), then another simple S-wave (section 
3-4) a water-saturation jump D2, and another degenerate wave (section 4-5). As a result of 
substituting 5 =.X/T into the first equation of (6.3) we arrive at the expression5 = &(S, C) ldS 
which means that in the (S, 8) plane the self-similar variable 5 is identical with the angular 
coefficient of the tangent to the F(S, C(S)) curve [5]. 

The water-saturation jump D2 is constructed as in the Buckley-Leverett problem [S]. 
Because this problem is described by two equations of the form (l.l), (1.2), the only stability 
condition for this jump is the mobility ratio (5.10). Unlike the case of the Dz jump, to clarify 
the stability question for the D, concentration jump it is necessary to investigate its stability 
with respect to non-contact perturbations. 

System (6.1), (6.2) is a special case of the system of equations (1.9) in which one must put 

A= 
F,’ F,’ 

[ 1 0 FIS' 
B=O, ‘pp =bj =O 

The relation between systems (6.1), (6.2) and (1.9) allows one to find linear equations in the 
first approximation for the perturbed motion of the discontinuity front (3.1)-(3.3), where 

The system of linear algebraic equations at the D, jump for the Fourier-transforms with 
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respect to y and z has, according to (4.7)-(4.10), the form 

s+-s- =-U(F+/S+)j,O(F,‘+-&‘-)+(F+-F-)j (6.4) 

-cm = uF,'+jz(F,'+- F,‘-)- C-F-j (6.5) 

Solving (6.4) and (6.5) for the constants U and j and then substituting into (6.6) we obtain a 
quadratic equation for the perturbation decrement o. Omitting complicated transformations 
and taking the jump conditions into account [5] 

F,” > q-, F+<F-, S+<S-, F,‘cO, &‘>O 

(F+-F-)I(S+-S-)>l 

we find from the Routh-Hurwitz criteria [ll] that 
stability for all wave numbers y are the inequalities 

the necessary and sufficient conditions of 

II-<I-I+ (6.7) 

(S+-S-)F,‘+-(F+C-/S+)>O 

(s+ - s-)F,‘+- c- (6.8) 

(s+ -S-)F,‘+-(F+C- /S+) F+ 

(s+ - s-)F,‘+- c- < (F,‘+ - F,-)s+ 
(6.9) 

F,‘+@l-I+ / t3C) - (F+ / S+ )@-I+ / 3s) > o 

(S+ - S-)F’+- C-F- 
(6.10) 

Only one of these inequalities need be violated for the jump to be unstable. Thus. for the concentration 
jump to be stable, as well as the usual mobility relation (6.7) it is also necessary that the additional 

conditions (6.8)-(6.10) should be satisfied. These conditions are non-trivial and independent of (6.7). As 
an example we consider condition (6.9). We assume that the concentration C = C- is small. Then on the 
left-hand side of this condition there is a quantity close to unity. Because the ratio of the derivatives of the 

Buckley-Leverett functions before and after the jump is almost arbitrary (we only know that F,” > F:-), 

the right-hand side of inequality (6.9) may turn out to be a number which can be larger or much smaller 
than unity. 

In just the same way conditions (6.8) and (6.10) can be satisfied or violated, even if the mobility ratio 
(6.7) indicates that the jump is stable. 

We wish to thank P. G. Bedrikovetskii, 0. Yu. Dinariyev and A. T. Il’ichev for useful 
discussions. 
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